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ABSTRACT 

This paper examines the failures in risk assessment and 
risk management that contributed directly to the 
worldwide financial crisis of 2008 - 2009 and identifies 
lessons that are applicable to risk management in general 
and to satellite navigation integrity verification in 
particular.  The market-distorting events leading up to the 
financial crisis are reviewed, and the role of flawed risk-
management concepts is revealed.  In particular, over-
exploitation of the erroneous Efficient Market Hypothesis 
(EMH) and the unquestioned assumption of Gaussian 
market state transition probabilities led to the formulation 
of risk-quantification models upon which the debt market 
that collapsed in 2008 were based.     
 
This paper derives several lessons from the failures that 
led to the financial collapse, including the preference for 
probabilistic models in risk assessment and the need to 
highlight the assumptions behind deterministic models 
when they are used instead, particularly when one 
deterministic model is derived from another.  These 
lessons serve as reminders that, despite the high level of 
conservatism applied to satellite navigation risk modeling; 
faulty assumptions can create serious problems if careful 
vigilance regarding the ongoing applicability of these 
models is not vigorously and continuously maintained. 
 
 

1.0 INTRODUCTION 
 
The causes of the financial crisis that has led to a severe 
global economic downturn since mid-2008 are many and 
complex.  Beyond the combination of natural forces and 
human errors that led to the devastation of Hurricane 
Katrina in 2005 (see [1]), the less-desirable attributes of 
human nature – avarice, selfishness, narcissism – played a 
direct role in setting the stage for the financial crisis.  
However, the building blocks of the financial market 
structures that collapsed at the onset of the crisis were 
originally developed by academic economists and 
researchers who were not primarily motivated by personal 
greed.  The framework of financial market modeling and 
risk management that economists developed over decades 
became nearly universally accepted by the 1980’s, even 
though many of its flaws were readily apparent.  As the 
decades progressed, quantitative models built atop this 
framework diverged further and further from reality.  
They provided the mathematical underpinnings to the 
complex securitized-debt investments that were extremely 
profitable for their originators in the investment-banking 
community but which collapsed into junk as their 
fundamental assumptions were shown to be invalid. 
 
This paper examines the contribution of faulty risk 
assessment and risk management to the recent financial 
crisis.  As with the paper on Hurricane Katrina from ION 
GNSS 2008 [1], the goal is to learn lessons from this 
experience that can improve the way that risk is assessed 
and managed in engineering projects, particularly those 
related to satellite navigation.  These lessons are mostly 
indirect, as the context of risk management for safety-
critical applications of satellite navigation is far more 
responsible and conservative than the approach taken by 
the financial community.  Despite this, several 
connections can be drawn that relate to the details of how 
risk calculations are performed and the degree to which 
deterministic models of risk are dependent on underlying 
assumptions that cannot be proven. 
 
This paper is organized into the following sections.  
Section 2.0 describes briefly explains the origins of the  



Figure 1: 10-Year Treasury Bond Yields, 1964-2009 
 
financial crisis in terms of the development and sudden 
collapse of debt-based securities.  Section 3.0 gives an 
overview of financial risk modeling and highlights 
specific theories that led to the construction of these 
securities.  Section 4.0 summarizes the general lessons 
that can be learned from this disaster and which are 
relevant to engineering risk management as a whole.  
Section 5.0 examines two specific aspects of integrity risk 
modeling for satellite navigation that are linked to these 
lessons.  Section 6.0 summarizes the paper and restates 
the lessons to be learned. 
 
2.0 AN OVERVIEW OF THE FINANCIAL CRISIS 
 
The financial crisis that began in late 2007 and gathered 
strength leading up to the collapse of Lehman Brothers in 
September 2008 was mostly a collapse of the market for 
debt (bonds) as opposed to equities (stocks).  The debt 
market had changed dramatically in the decade or so 
leading up to the crisis.  Several reasons have been cited 
for this change, but a primary motivation is shown in 
Figure 1, which plots the percentage yield on 10-year U.S. 
treasury bonds over the last 45 years [2].  The 10-year 
treasury bond is a benchmark in the debt markets because 
it is fully backed by the U.S. Government and is thus seen 
by most as “zero risk” or, at the very least, the least-risky 
form of debt.  To obtain a higher yield in the debt markets 
implies taking on more risk of default – risk of not being 
paid back.   
 
As shown in Figure 1, the yield on “risk-free” treasury 
bonds had dropped to historically low levels by the late 
1990’s and dropped further after the 2000-2001 stock-
market decline as the Federal Reserve kept interest rates 
low to limit the damage to the broader economy.  The 
maintenance of low interest rates during this decade fed 
the explosion of “easy money” that made it easy for 
consumers to borrow and spend past their means.  The 
securitized-debt market that arose from this situation in 
the first half of this decade provided the mechanism and 
motivation for “easy money” to spread so easily 
throughout the broader economy. 
 

Faced with the low yields on “safe” treasury bonds, and 
having a limited number of options to invest at higher 
yields with more risk, significant demand arose for debt 
investment vehicles that could do three things (see [4]): 
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1) Provide higher yields with only slightly higher risk 
 than treasury bonds;   

2) Provide multiple options tailored for different risk-
 versus-reward objectives;  

3) Provide healthy profits (“fees”) to loan originators 
 and sellers (retail and investment banks). 
 
The market in Collateralized Debt Obligations (CDOs) 
based on residential home mortgages grew so quickly 
because of its success in meeting these objectives.  A 
simplified “wine glass pyramid” picture of how these 
securities were structured is shown in Figure 2 ([3], also 
see [4]).  On the left-hand-side of the figure, collections of 
thousands of individual home mortgages are shown, and 
these combined mortgages pay principal and interest 
when the individual homeowners included in the 
collection pay their mortgages every month.  The 
resulting outflow of money (shown at the top, flowing 
from the bottle exit) is sufficient to fill all of the glasses 
and trays shown below if all of these homeowners pay 
their mortgages in full.  However, the CDO is structured 
with the knowledge that a few homeowners may stop 
paying and/or eventually default on their loans.  
Therefore, the first glass to be filled, at the top of the 
pyramid, is the least risky.  Once it is filled, the 
“overflow” fills the next row of glasses, and so on until all 
rows are full or until the money runs out and the bottom 
row or rows go unfilled. 
 
Because the risk of mortgage non-payment and default 
was thought to be well-understood, this structure allowed 
packages of mortgages to be “securitized” and sold to 
external investors in pieces known as “tranches”.  
Investors aiming for a level of risk only slightly higher 
than treasury bonds but with significantly higher yields 
would purchase the “1st tranche”, which was designed 
such that the agencies who rate debt instruments 
(Moody’s, Standard & Poor’s, etc.) would assign it the 
highest rating (i.e., lowest risk) of “AAA” or equivalent.  
Other investors with different risk vs. return preferences, 
such as mutual funds and hedge funds, purchased the 
lower tranches, taking on more risk but receiving a higher 
yield when their tranches filled up.  The investors’ risk 
could be lowered further by purchasing “credit default 
swaps” (CDSs), which were essentially insurance against 
default of the underlying tranche of the CDO.  Because 
the 1st tranche, in particular, was rated “AAA”, it was 
seen as having a very low default risk; thus a CDS against 
it could be bought relatively cheaply, even though a 
default would be enormously expensive to the firm selling 
the CDS.  
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Figure 2:  “Wine Glass Pyramid” Overview of Securitized Debt Market (from [3]) 

The collapse of these debt structures at the outset of the 
financial crisis was due to the fact that the models of 
default risk that they were built upon were seriously 
flawed.  The key to modeling the risk of each tranche in 
the structure shown in Figure 2 is understanding the 
underpayment/default risk of each individual mortgage 
and the correlation of these risks across the thousands of 
mortgages comprising a given CDO.  It was expected that 
any rise in defaults would be gradual and mostly 
uncorrelated from region to region of the U.S.  Under 
these circumstances, the flow of money shown in Figure 2 
would recede gracefully and would expose the lower 
tranches to the risk that they had agreed to assume.  
Instead, when homeowners across the nation began 
defaulting simultaneously at much higher rates than 
predicted, the flow of money seized up all at once, leaving 
even 1st-tranche investors unpaid.  Institutions overly 
invested in CDOs and those who had sold credit default 
swaps that they could never pay off began to collapse in a 
domino pattern.  The collapse of Lehman Brothers and the 
threatened collapse of AIG in mid-September 2008 led 
the U.S. and other governments, fearing a complete 
shutdown of the financial and credit markets, to step in 
and effectively guarantee the liabilities of the largest 
institutions – those deemed “too big to fail.”   
 
Section 3.0 will describe the financial-risk theories that 
led to the development of CDOs based on default-risk 
models that were so terribly wrong.  It should be noted 
that excessive belief in these models led to behavior 
among the home lenders, investment banks, and debt 
purchasers that in retrospect looks fraudulent (and in 
many cases was fraudulent).  As the popularity of CDOs 
grew, the demand for more and more of them and the fees 
generated by them led to compromises throughout the 

origination process.  Home lenders relaxed their standards 
for issuing mortgages since they would be quickly sold to 
investment banks.  The investment banks paid little 
attention to the declining quality of the mortgages they 
were buying because individual mortgage risk mattered 
little when thousands of mortgages were “averaged 
together” in a CDO.  Rating agencies used the same logic 
to avoid looking closely at individual mortgages when 
rating tranches (in addition, they were motivated to 
provide a “AAA” rating to the 1st tranche, as they were 
paid by the banks originating the CDOs).  These messy 
realities would have weakened the applicability of any 
risk models that did not take such changes in behavior 
into account, even if they were not as fundamentally 
flawed as the models that were actually used. 
 
3.0 RISK MIS-MODELING UNDERPINNINGS OF 
THE FINANCIAL CRISIS 
 
3.1 The Efficient Market Hypothesis (EMH) 
 
The origin of the risk models upon which the structure of 
CDOs and CDSs was based is well-described in [5] (also 
see [6]). It starts with the observation of Louis Bachelier 
around 1900 that stock market prices tended to follow a 
“random walk”, meaning that, given the observed present 
price, the following price (at the close of the following 
day, for example) appeared to represent a random change 
up or down.  Bachelier examined the use of the “bell 
curve” (i.e., the Gaussian distribution) to model these 
changes but was cautious in doing so because he knew 
that the market prices were heavily influenced by human 
behavior and thus did not represent naturally-occurring 
combinations of smaller random factors.  The 
mathematics he developed influenced Einstein’s  



Figure 3:  DJIA Percentage Change Compared to 
Normal (Gaussian) Distribution, 1928 – 2008 [9] 

 
publication of similar tools a few years later, and the 
resulting concept became a popular means of modeling 
random variations in continuous time series, although it 
was not used in the financial world until the formulation 
of the Efficient Market Hypothesis (EMH) in the 1960’s. 
 
The EMH is normally credited to Eugene Fama of the 
University of Chicago School of Economics but is the 
child of many fathers at the University of Chicago and 
elsewhere, including such famous names as Paul 
Samuelson and Milton Friedman [5].  The basic idea of 
the EMH is that today’s market price, being the product 
of a continual tug-of-war between buyers and sellers, is 
the outcome of all information available to a population 
of investors that is collectively (if not individually) 
“rational.”  Therefore, today’s market price is the best 
possible estimate of the “true value” of the underlying 
security, and any change between today and tomorrow is 
due to changing information about this “true value.”  The 
EMH summarized in this manner is the “strong” version – 
in short: “the price is right.”  Weaker versions exist which 
place less reliance on the “perfection” of today’s price 
and limit themselves to the concept of “no free lunch,” 
meaning that the level of imperfection in today’s prices is 
not large enough for individual investors to outperform 
the market, except by chance [7].   
 
Over time, as described in [5], the stronger versions of the 
EMH became the foundation of both academic finance 
and investing as practiced by investment banks and large 
institutions.  The dominant reason for this is the degree to 
which the EMH made tractable analytical, quantitative 
analysis of the financial markets.  By stating that current 
prices contained all available information, the EMH 
denied that past price data (or other information) was 
relevant.  Therefore, market price evolution could be 

modeled as a Markov process.  In particular, the EMH 
justified the “random walk” model of prices, and reliance 
on the Central Limit Theorem allowed this random walk 
to be further approximated as a Wiener process with 
Gaussian transition probabilities ([6,8]).  These factors 
came together to create an “elegant” analytical framework 
that could be manipulated on paper to generate useful 
results – a prime feature for most academic researchers.  
As the academic consensus grew and students of business 
schools flowed into Wall Street, these features became 
attractive to financial practitioners as well.   
 
While the EMH has been tested with historical data many 
times since its formulation, the meaning of the results of 
these studies has been very much in the eye of the 
beholder.  By and large, the random-walk price model 
justified by the EMH has been shown to approximately 
model price evolution most of the time.  The key caveats 
are “most of the time” and the significance of historical 
market data in this context, as no objectively perfect 
measure of the relationship between market value and 
“real” value exists.   Figure 3, taken from [9], is a simple 
example showing how a Gaussian model of percentage 
changes in the Dow Jones Industrial Average (DJIA) 
(with σ = 1.032% from 1928 – 2007) became grossly 
flawed as the financial crisis reached its peak (the 
exceptions shown in the table are for October 2008).   It 
was also wildly incorrect during the Great Depression 
years of the 1930s.  The more stable years in between are 
much closer to Gaussian but are not exactly Gaussian, 
illustrating the limits of the Gaussian assumption even 
under relatively benign market conditions.   
 
Flaws in both the Gaussian model of market price 
changes and the assumption of “rational” behavior 
underlying it have become much better understood over 
the past 20 years, particularly due to the rise of so-called 
“Behavioral Economics” [5].  Why, then, did belief in the 
correctness of the EMH maintain such a hold on 
mainstream financial thought?  One of the best-known 
experts in quantitative finance, Paul Wilmott, identified 
the reason quite bluntly in one of his recent books (when 
discussing the applicability of the Gaussian distribution) 
as follows ([6], pp. 33-35, emphasis added): 
 

In finance we often assume that equity returns are normally 
distributed. … We find ourselves using the normal 
distribution quite naturally for many financial processes. 

As often with mathematical ‘laws’ there is the ‘legal’ small 
print, in this case the conditions under which the Central 
Limit Theorem applies 

• The random numbers must all be drawn from the same 
distribution; 

• The draws must all be independent; 

• The distribution must have finite mean and standard 
deviation; 



Of course, financial data may not satisfy all of these, or 
indeed, any.  In particular, it turns out that if you try to fit 
equity returns data with non-normal distributions you often 
find that the best distribution is one that has infinite 
variance.  Not only does it complicate the nice mathematics 
of normal distributions and the Central Limit Theorem, it 
also results in infinite volatility.  This is appealing to those 
who want to produce the best models of financial reality 
but does rather spoil many decades of financial theory and 
practice based on volatility as a measure of risk for 
example. 

However, you can get around these three restrictions to 
some extent and still get the Central Limit Theorem, or 
something very much like it. … We tend to assume that 
equity returns are normally distributed, and equivalently, 
equities themselves are lognormally distributed. 

 
This statement makes the reality clear.  It is obvious to 
those who retain an open mind that the normal (Gaussian) 
distribution component of the random-walk (strictly 
speaking, the Wiener-process) model does not apply to 
financial markets, but assuming that it does is too 
convenient to give up.  “Many decades of financial 
theory” are based upon it, and these theories are so useful 
that it is better to force-fit the Gaussian distribution model 
to financial processes by “getting around” the restrictions 
of the Central Limit Theorem.  It is fair to say that, in this 
case, academic and professional preference for tractable, 
analytical, easy-to-use models trumped the search for 
“truth” a long time ago. 
 
3.2 The Gaussian Copula Default Correlation Model 
 
As bad as the flaws in the EMH are, these flaws were 
grossly compounded by succeeding financial models that 
assumed the EMH was perfect true to the nth degree.  One 
of these successor models formed the key mathematical 
framework behind the CDO risk model described in 
Section 2.0.  This was the so-called “Gaussian copula 
formula” for modeling correlations between loan default 
risks.  As explained in [10], this theoretical correlation 
model was adopted for loan defaults in 1999 by David Li 
of RiskMetrics [11].  The simplification of correlation 
into a single parameter made it easier to fit historical data 
on default risk correlation to a tractable model.  Despite 
this, the relative rarity of defaults prior to 2000 made any 
correlation model based on historical default data highly 
uncertain.  Li got around this problem with a clever (and 
disastrous) insight:  since the EMH stated that market 
prices were the best possible estimates of true value, 
statistical correlations inferred from these prices (in this 
case, prices of CDSs) were also the best possible 
estimates.  Given the dearth of historical data on defaults 
themselves, this aggressive extrapolation could not really 
be tested, but no test was necessary, given the level of 
acceptance of the EMH by 2000. 
The resulting market-driven copula model for default risk 
correlation became instantly popular, as it enabled the 

creation of complicated CDOs and other mortgage-backed 
derivatives without the in-depth analysis that would 
normally have been needed [10].  It should be noted that 
generating single-parameter correlation estimates 
(assumed to be constant over time) from CDS prices 
required a historical database of market prices for CDSs.  
CDS market data was far more extensive than data for 
actual defaults but was limited to the period since about 
1998 when CDS trading volumes became significant [10].  
This period did not see any significant declines in home 
prices and thus was not at all representative of the 
situation beginning in 2007, when home prices began 
falling simultaneously across much of the country.  Under 
rising home-price conditions, defaults did occasionally 
occur due to personal misfortunes but were scattered and 
mostly uncorrelated. However, when home prices fell 
nationwide, similar financial stresses hit homeowners 
everywhere, many of whom had been extended credit 
beyond their means in the rush to satisfy investors’ 
craving for more and more CDOs.   
 
As noted in Section 2.0, the sudden and dramatic change 
in the correlations among home mortgage defaults 
completely destroyed the copula model and caused the 
collapse of the “tranching” system on which CDOs were 
based.  Suddenly, the 1st tranche of CDOs was almost as 
vulnerable as the lower tranches, and some CDOs began 
to stop paying the 1st tranches, the resulting losses were 
far beyond what investors (and those carrying the risk of 
default through sales of CDSs to CDO investors) could 
handle.  Reserves for losses were insufficient primarily 
because widespread, near-godlike faith in the EMH and 
the copula correlation model made losses of such 
magnitude seem impossible.  But the lack of sufficient 
reserves was a broadly-shared problem throughout 
corporate America for reasons that will be discussed in 
the next section. 
 
3.3 “Value-at-Risk” (VaR) Modeling 
 
Another important offshoot of the EMH and the analytical 
risk models that flow from it is what is known as “Value-
at-Risk” (VaR) form of company-wide or investor-wide 
risk modeling.  This approach was developed by 
JPMorgan’s RiskMetrics group in the early 1990’s with 
the express intent of providing a standardized risk-
modeling and reporting method that would be used widely 
in the business and financial world (note that the 
RiskMetrics group, which was later spun off into an 
independent company, was where David Li worked when 
he developed the copula model) [12].  To encourage 
widespread adaptation, RiskMetrics published the basic 
methodology and made it available for free, while earning 
income from consulting and implementing the approach 
for individual companies.  VaR uses simplified, 
straightforward extrapolations of the EMH to allow rapid, 
near-real-time calculation of a single output quantity 



known as the “Value at Risk” or “VaR”.  This single 
number is easy (perhaps too easy) for managers to 
understand – it expresses the maximum loss over a given 
interval at a predefined (and often unstated) confidence-
interval percentile.  For example, the weekly VaR for a 
given company aims to represent the maximum possible 
loss at the 95th or 99th percentile (typically one of these is 
used and is defined beforehand) over the next week of 
company-wide activity [12]. 
 
The flexibility, speed, ease of use, and ease of 
understanding of the single VaR output made VaR an 
attractive basis for risk reporting regulations issued by the 
U.S. Securities and Exchange Commission.  By 2000, 
VaR had become the industry standard originally desired 
by JP Morgan [12].  Despite this, the limitations of VaR 
were obvious and should not have surprised anyone.  By 
definition, VaR only models risk to the 95th or 99th 
percentile, which is the furthest that “nominal market” 
extrapolations of the EMH can be taken to even 
approximately hold.  Therefore, it is of little use in 
predicting what might happen during events like the 
correlated home market decline of 2007-2008, although 
even this event should not have been so surprising given 
the evident extremes that home prices had reached (in 
comparison to incomes) by 2006.  However, the very 
simplicity of the VaR output that encouraged its 
widespread adoption allowed managers to forget that VaR 
was only useful to, at most, the 99th percentile.  It quickly 
became thought of as an actual “worst-case” bound on 
losses and treated as such in management and risk-based 
portfolio optimization.  This led to the maintenance of 
loss reserves throughout the economy that were far short 
of what was needed, which allowed companies to boost 
reported earnings.  Worse, as noted by the well-known 
risk-management skeptic Nassim N. Taleb, it actually 
encouraged foolhardy trades that would consistently pay 
off 99% of the time but which led to disaster under 
unlikely (and ignored by VaR) default scenarios [12,13]. 
 
As described in [12], a healthy academic debate exists as 
to what degree VaR is useful within the 95th –  99th 
percentile of risks and to what extent interpretations of 
VaR by risk professionals can be useful in estimating the 
threat posed by more extreme risks.  But the fact that VaR 
calculations do not include the extreme risks that can 
destroy investors and companies should not have been so 
thoroughly ignored by managers and decision-makers.  In 
retrospect, approaches like VaR that try to oversimplify 
risk to the point where managers think they fully 
understand it are worse than useless since they are so 
likely to be abused.  VaR is far from useless for experts in 
risk modeling, but these experts should not need the 
crutches and simplifications of VaR.    Their job should 
be to understand risk in all of its complexity and to 
communicate that risk to decision-makers (qualitatively, 
if necessary) as fully as possible. 

3.4 The Fault of Mathematicians 
 
This section has described several ways in which gross 
simplifications and distortions of financial reality 
contributed to the financial debt-market collapse.  While 
the vast majority of the financial community was blind to 
these flaws (unwittingly or wittingly) prior to the financial 
crisis, some experts did warn of them repeatedly and 
loudly, only to be ignored.  Prior to the crisis, many 
people warned of a bubble in the housing market that 
would be disastrous for the credit markets when it 
“popped.”  However, this inconvenient fact has been 
downplayed by those looking for bailouts, as they would 
prefer to pretend that the crisis “could not have been 
foreseen” and represented the equivalent of a magnitude-9 
earthquake in a seismically-quiet region. 
 
Several experts in and proponents of quantitative finance 
modeling have highlighted weaknesses in the underlying 
theory and means by which the models have been mis-
applied by those who should have known better.  Paul 
Wilmott, quoted regarding the Gaussian market-return 
assumption in Section 3.1, published a paper in 2000 in 
which he highlighted examples of misuse.  The abstract to 
this paper is quoted in full below (emphasis added) [14]: 
 

The once 'gentlemanly' business of finance has become a 
game for 'players'.  These players are increasingly 
technically sophisticated, typically having PhDs in a 
numerate discipline.  The roots of this transformation have 
their foundation in the 1970s.  Since then the financial 
world has become more and more complex.  Unfortunately, 
as the mathematics of finance reaches higher levels so the 
level of common sense seems to drop.  There have been 
some well-publicized cases of large losses sustained by 
companies because of their lack of understanding of 
financial instruments.  In this article we look at the history 
of financial modelling, the current state of the subject and 
possible future directions.  It is clear that a major rethink is 
desperately required if the world is to avoid a 
mathematician-led market meltdown. 

 
This blunt, specific, and correct prediction of the crisis 8 
years before it occurred has greatly enhanced Wilmott’s 
reputation within the broader financial community.  It has 
also motivated Wilmott to expand his efforts to mitigate 
the ongoing misuse of quantitative finance.  He and 
another well-known expert, Dr. Emanuel Derman 
(formerly of Goldman-Sachs), have recently created “The 
Financial Modelers’ Manifesto,” which imitates the form 
of “The Communist Manifesto” but is far more useful.  
The full version of this document can be found online 
[15]; an extended excerpt follows (emphasis added):  
 

Our experience in the financial arena has taught us to be 
very humble in applying mathematics to markets, and to be 
extremely wary of ambitious theories, which are in the end 
trying to model human behavior. We like simplicity, but we 
like to remember that it is our models that are simple, not 
the world.  



Building financial models is challenging and worthwhile: 
you need to combine the qualitative and the quantitative, 
imagination and observation, art and science, all in the 
service of finding approximate patterns in the behavior of 
markets and securities. The greatest danger is the age-old 
sin of idolatry. Financial markets are alive but a model, 
however beautiful, is an artifice. No matter how hard you 
try, you will not be able to breathe life into it. To confuse 
the model with the world is to embrace a future disaster 
driven by the belief that humans obey mathematical rules. 
 
MODELERS OF ALL MARKETS, UNITE! You have 
nothing to lose but your illusions. 

The Modelers' Hippocratic Oath 

• I will remember that I didn't make the world, and it 
doesn't satisfy my equations. 

• Though I will use models boldly to estimate value, I will 
not be overly impressed by mathematics. 

• I will never sacrifice reality for elegance without 
explaining why I have done so. 

• Nor will I give the people who use my model false 
comfort about its accuracy. Instead, I will make explicit its 
assumptions and oversights. 

• I understand that my work may have enormous effects on 
society and the economy, many of them beyond my 
comprehension. 

 
While this manifesto is focused on financial modeling, its 
lessons are broadly applicable to all aspects of 
mathematical modeling under uncertainty.  Decades of 
experience in quantitative financial modeling suggests 
that, where mathematical models are concerned, the more 
useful they appear to be, the less-connected they are with 
reality.   Even this is not a new observation – it goes back 
at least to Albert Einstein, who observed in 1921 that “As 
long as the laws of mathematics refer to reality, they are 
not certain; and as far as they are certain, they do not refer 
to reality.” [16]  If this principle applies to physics, it 
certainly applies to all applications of mathematical risk 
modeling in engineering. 
 
4.0 GENERAL RISK-MANAGEMENT LESSONS 
FROM THE FINANCIAL CRISIS 
 
Given all that has been described above, what lessons can 
be learned regarding the practice of risk modeling and 
risk management in engineering?  While many books 
could be written about this subject, a couple of key points 
should be made clear.  First is the fact that precise 
modeling of the unknown is simply not possible.  This 
represents a fundamental limitation of deterministic 
mathematical modeling of risk, where “deterministic” 
refers to models in which “randomness” is limited to the 
assumption of specific, known probability distributions 
for a relatively small subset of model parameters.  The 
fundamental cause-and-effect relationship is assumed to 
be known precisely, and unknowns that cannot easily be 

modeled as random variables (with known probability 
distributions) are handled by “assumptions” that 
transform actual uncertainty into apparent certainty.  This 
framework describes almost all models used in practical 
risk modeling today, and all such models are vulnerable to 
“unknown unknowns” or “unforeseen extreme events” 
(“black swans”, in the parlance of [13]).  As described in 
Section 5.0 on satellite navigation, conservative 
assumptions can be made to limit this risk, but it cannot 
be completely eliminated.   
 
For these reasons, probabilistic models are much more 
realistic when the level of uncertainty is significant.  
“Probabilistic” here refers to models that do not simplify 
or assume away uncertainty.  Instead, uncertainty is 
modeled with as many probability distributions as are 
needed to represent the modelers’ actual level of 
ignorance.  For example, instead of assuming that a 
Gaussian distribution with known mean and standard 
deviation describes equity market returns (in the financial 
case), a truly probabilistic model would include multiple 
potential distributions (one of which might be Gaussian) 
and parameters with different probability weightings, and 
the weights themselves might be random variables.  
Choosing weightings and “probabilities of probabilities” 
must still be done by imperfect modelers, but the entire 
emphasis is different.  Instead of attempting to produce 
specific numerical bounds on uncertainty, convolving the 
multitudes of probabilities in this approach (typically via 
Monte Carlo simulation) results in an output histogram 
that offers no such comfortable guarantees.  Simply put, 
deterministic models  provide precise quantification of 
uncertainty whose accuracy and precision are illusory 
because they depend wholly on the assumptions used to 
generate the results.  Probabilistic models also produce 
imprecise outputs, but the imprecision is real, and the goal 
of these models is to identify this lack of precision as 
opposed to covering it up.  
 
Because the probabilistic approach is so philosophically 
different from the deterministic one, it is likely that more-
traditional deterministic risk models will remain 
dominant.   As noted above, these models require multiple 
assumptions regarding uncertain behavior and 
simplifications to make the resulting model tractable and 
useful for analysis.  As noted above, once useful models 
have been created through this process, the danger is 
forgetting how they were created and growing to believe 
in them too strongly while ignoring all contrary data, as 
happened with the EMH.  To avoid this, the assumptions 
and simplifications on which deterministic risk models 
are based should be highlighted not only during the 
modeling process but also when results are presented.  
Since the results are, at best, only as good as the 
underlying assumptions, it is fair to say that the 
assumptions and simplifications remain more important 
than any results that may be achieved.  If these shaky 



foundations are consistently emphasized, fewer people 
will be tempted to willfully or accidentally mis-interpret 
the results.  Researchers will also be much less likely to 
extrapolate from one flawed model to another without 
consideration of these weaknesses.  The copula model for 
default correlation described in Section 3.2 was a perfect 
example of an extrapolation from a flawed model (the 
EMH) into an absurd one, where mathematics ruled and 
common sense was completely thrown overboard.  
 
5.0 LESSONS APPLICABLE TO SATELLITE 
NAVIGATION INTEGRITY ASSURANCE 
 
The risk-modeling lessons of Section 4.0 have multiple 
applications to satellite navigation and, in particular, 
integrity assurance for satellite navigation.  First, we must 
recognize that integrity or safety assurance is a unique 
application of risk assessment in which the aim is to 
protect passengers from the consequences of very rare but 
potentially hazardous threats.  Accordingly, a great deal 
of conservatism is often applied when assessing these 
threats using deterministic risk models [17].  The 
following subsections describe specific characteristics 
that are shared between the risk models that led to the 
financial crisis and the much more conservative ones used 
in modeling satellite navigation integrity risk. 

5.1 Use of the Gaussian Distribution   

As in the financial world, the Gaussian probability 
distribution is used extensively to model nominal error 
behavior and to compute position-domain protection 
levels that are intended to bound worst-case user position 
errors at the integrity-risk probabilities required for user 
safety.  The Gaussian model is also a convenient and 
efficient means of communicating ground-system errors 
to users of GNSS augmentations such as Space-Based and 
Ground-Based Augmentation Systems (SBAS and GBAS, 
respectively) in terms of a single parameter: the standard 
deviation or “sigma” of range-domain errors [17,18,19].  

Fortunately, unlike the blanket assumption of the 
Gaussian distribution in the EMH and its progeny, great 
care is taken in using the tails of the Gaussian assumption 
to bound rare-event errors under nominal conditions (so-
called “rare-normal” errors).  Extensive data studies of 
GPS, SBAS, and GBAS data have shown that, while the 
Gaussian distribution approximately holds in many cases 
and is usually a good model within the 99th percentile of 
errors, it is not a good description of rare-event behavior.  
In particular, rare-event “tails” of actual data often 
considerably exceed what is predicted by the Gaussian 
distribution.  Several reasons exist for this, but the 
dominant one is the phenomenon of “mixing” of errors 
with different underlying actual distributions [17,18].  
This makes sense when one considers that “rare-normal” 
errors are not really “normal” but instead are 

combinations of various “off-nominal” conditions that 
have different causes. 

Because use of the Gaussian distribution is built into the 
standards for SBAS and GBAS, the primary defense 
against its inapplicability at low probabilities is to inflate 
the sigmas broadcast by SBAS or GBAS (or assumed in 
user equipment) such that the assumed Gaussian 
distribution “overbounds” the actual, unknown (and likely 
very complex) error distribution at the probabilities that 
matter for user safety.  Given the limited usefulness of 
theory and the limited amount of statistically-independent 
data that can be collected in an attempt to identify the 
“real” error distribution, this is a difficult problem.  
Several approaches to deriving bounding inflation factors 
from collected data have been published, e.g., see [20,21].  
No matter which method is used, no means of “proving” 
rare-event error bounding by Gaussian distributions exists 
or can exist, given that the required assumptions cannot 
be proven.  Despite this, the use of conservatism and 
common sense in deriving inflation factors (and then 
applying additional margin for “unknown unknowns”) 
should sufficiently cover the underlying uncertainty. 

Even after inflation has been applied, the reliance on 
Gaussian error models becomes much more critical when 
they are extrapolated to derive distributions for squares of 
errors, as is done in Receiver Autonomous Integrity 
Monitoring (RAIM) and in real-time monitoring of the 
broadcast sigma parameters.  As with the derivation of the 
copula model for default correlation in Section 3.2, 
whatever errors exist in the Gaussian error model are 
greatly magnified when the errors are squared and then 
assumed to follow a chi-square distribution.  For this 
reason, great care should be exercised when modeling any 
distribution that is derived from a starting assumption of a 
Gaussian distribution.  This applies to results within the 
99th percentile as well as to rare events. 

5.2 Reliance upon Historical Data   

As with financial risk quantification, historical data of 
GPS performance is used to build models of failure 
probabilities and anomaly behaviors, and this process 
suffers from a lack of data due to the recent heritage of 
GPS, which was not fully commissioned until 1995.  For 
example, estimating the prior probability of sudden, 
unpredictable failures in GPS satellites is mostly based 
upon the observed failure history of GPS satellites in orbit 
since 1995, but such failures are quite rare and are not 
consistent across all GPS satellites.  They occur more 
frequently as GPS satellites approach end-of-life, and they 
change as different GPS satellite types (Block II, IIA, R, 
etc.) are deployed over time.  In general, there is no 
guarantee that future GPS satellite or GPS Operational 
Control Segment performance will correspond to what 



has been observed in the past.  Thus, it is risky to estimate 
one failure rate across all GPS satellites [22].   
 
For SBAS and GBAS, conservatism and common sense 
must again be applied to limit the impact of these 
uncertainties.  Failure-rate estimates are made from data 
where different satellites are combined, but significant 
margin is applied to account for the differences between 
satellites.  The resulting prior probabilities for failures 
that might threaten user integrity are conservative for all 
fault types and are extremely conservative for others 
where limited or no data exists.  The problems that come 
from reliance on limited historical data are even more 
severe when “threat models” are created to represent 
possible system behaviors when a particular fault or 
anomaly (e.g., satellite signal deformation, ionospheric 
storms) occurs.  In the case of satellite signal deformation, 
deterministic threat models have been extrapolated from a 
single observed event, the fault on SVN 19 discovered in 
1993 [23].  As described in Section 5.4, worst-case 
assumptions are typically used to handle uncertainty 
within the resulting threat models. 
 
5.3 Correlation of Errors and Failures 

The failure of the Gaussian copula model described in 
Section 3.2 to properly handle the correlations between 
loan default risks highlights the problem of modeling 
uncertain and potentially time-changing correlations in 
general.  For satellite navigation, this problem breaks 
down into two categories: error correlation and anomaly 
correlation.  Correlation among nominal errors is 
relatively easy to deal with because significant data exists 
– one does not have to wait for anomalous conditions.  
However, even when truly uncorrelated data is present, 
the statistical “noise” inherent in correlation coefficients 
estimated from data is always non-zero.  Since the 
designer cannot tell whether real correlation exists or not, 
the resulting error sigmas must conservatively allow for 
significant non-zero correlations.   

One example of this in GBAS is the siting of ground-
system reference-receiver antennas far enough apart (~ 
100-200 meters) such that diffuse multipath (and most 
specular multipath) should be statistically independent 
from receiver to receiver.  However, this cannot be 
guaranteed, and even if it is true at a given site, statistical 
correlation estimates will be non-zero.  Therefore, the 
assumption that nominal errors in the resulting pseudo-
range corrections are reduced by a factor of two when 
averaging measurements across four reference receivers is 
not valid.  Conservative handling of the estimated 
correlation at a given site can properly “de-weight” the 
assumed credit given for averaging [24], or the designer 
can choose to take no averaging credit at all.   

On the other hand, modeling correlations among rare-
event anomalies mirrors the problem faced in modeling 
correlations among loan defaults and is very difficult.  
Unlike loan defaults, which are clearly correlated to some 
degree, GNSS satellite failure correlations are very hard 
to foresee because of our limited understanding of their 
causes [22].  The temptation to ignore correlations and to 
treat all failures as statistically independent is very high, 
as this allows simplified probability models to be used 
and results in probabilities of multiple failures that are 
usually small enough to be ignored.  But this is a 
dangerous trap that could result in neglecting important 
sources of integrity risk.  Avoiding this pitfall requires 
assuming some non-zero degree of failure correlation, but 
without detailed failure cause-and-effect information, it is 
very difficult to know how much correlation is 
sufficiently conservative in a deterministic risk model.  
This is one place where probabilistic models are far 
superior, as our degree of uncertainty regarding actual 
failure correlations can be handled directly by 
representing different correlation scenarios, or possible 
states of reality, and assigning probability weights (which 
can themselves be random variables) to each one. 
 
5.4 Worst-Case Failure Approximations   

Since the degree of uncertainty inherent in the develop-
ment of deterministic failure threat models is well-
understood, the resulting threat models are usually applied 
in terms of the worst-case fault within the bounds of the 
threat model.  Once one agrees to ignore the possibility of 
faults exceeding the threat model bounds, this worst-case-
fault assumption is the most conservative one possible.  
Note that the “worst-case fault” is judged from the user’s 
point of view, rather than that of the GNSS or service 
provider.  For example, the worst-case C/A-code signal-
deformation on a GPS satellite depends upon the design 
of the reference receiver providing differential corrections 
(if any) and the design of the user receiver.  SBAS and 
GBAS users are allowed a pre-specified “receiver design 
space,” and given the reference receiver chosen by a 
given SBAS or GBAS installation, finding the worst-case 
signal-deformation fault requires error maximization over 
all possible deformations in the threat model and all 
possible user receiver design parameters [23,25]. 

The GBAS (LAAS) threat model for anomalous iono-
spheric spatial gradients in CONUS is a good example of 
the effects of worst-case fault modeling.  Figure 4 shows 
a simplified, linear model of a large, “wedge-shaped” 
spatial gradient affecting a GBAS installation, and Figure 
5 shows a graphical summary of the parameter bounds of 
this threat model [26,27].  The geometry assumed in 
Figure 4 is a simplification of reality and cannot be 
assumed to hold precisely, even though the threat model 
assumes that it does.  Fortunately the resulting risk 
assessment is not very sensitive to small deviations from a 



Figure 4:  Geometry of GBAS (LAAS) Ionospheric 
Threat Model for CONUS 

Figure 5:  Parameter Bounds on GBAS (LAAS) 
Ionospheric Threat Model for CONUS 

perfectly linear front slope.  This kind of sensitivity 
analysis is what is required to test our vulnerability to 
violations of deterministic models whose underlying 
assumptions cannot be verified.  

The parameter bounds shown in Figure 5 cover the worst 
“validated” ionospheric gradients observed in CONUS 
since 1999 [27].  They cannot be guaranteed to cover 
future anomalies; thus ongoing monitoring of ionospheric 
anomalies is required to see if these bounds need updating 
in the future.  However, the outer bounds of the existing 
threat model appear to be very conservative because they 
come from a single ionospheric storm on a single day (20 
November 2003) in a small region of CONUS (Ohio).  
The other observations shown on Figure 5 represent 
examples of other anomalous conditions and do not 
include the vast majority of otherwise-anomalous 
gradients with slopes under 200 mm/km, which are 
generally not threatening to GBAS users.  Therefore, in a 
probabilistic model, the vast majority of the weighting 
(given that an anomaly condition exists) would go toward 
non-threatening gradients with tolerable slopes, a small 
fraction would go to the 200 – 300 mm/km slope range, a 
much smaller fraction to the 300 – 425 mm/km range, and  

Figure 6:  Near-Worst-Case Ionosphere-Induced 
Vertical Position Errors at Memphis  

then a very small but non-zero fraction to gradients above 
425 mm/km (the upper bound in Figure 5) that have not 
been observed to date but cannot be ruled out.  

Given this uncertainty within a deterministic model, the 
worst-case gradient of 425 mm/km (for high-elevation 
satellites) is assumed to be present at all times, and its 
hypothetical presence is simulated, with the worst 
possible approach geometry and timing relative to a single 
approaching aircraft, on all pairs of satellites otherwise 
approved by a LAAS Ground Facility, or LGF.  The 
largest resulting vertical position error over all potential 
user satellite geometries represents the Maximum 
Ionospheric Error in Vertical (Position), or MIEV, that 
must be protected against.  Before mitigation by LGF 
geometry screening (see [26,29]), this worst-case error 
can be as large as 40 – 45 meters.  Figure 6 illustrates the 
potential magnitude of vertical errors under “near-worst-
case” ionospheric anomaly conditions based on a limited 
probabilistic model that varies front slope (above 350 
mm/km), speed, satellites impacted, and approach 
direction relative to that of the aircraft for a user 
approaching the LAAS facility at Memphis International 
Airport with the SPS-Standard 24-satellite GPS 
constellation [28] (only subset geometries with two or 
fewer satellites removed are considered) [26].  Note that 
the worst-case position error or “MIEV” prior to LGF 
geometry screening is about 41 meters, but the relative 
likelihood of this result is very low.  Much more common 
are errors in the 5 – 15 meter range (note that the majority 
of cases where the LGF detects the anomaly before 
significant error occurs are not included in the histogram).  
LGF geometry screening acts to remove potential subset 
geometries (i.e., make them unavailable by inflating the 
broadcast parameters) whose worst-case error exceeds 
28.8 meters, but the price of this is substantially lower 
availability for CAT I precision approaches [29]. 
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Figure 6 shows the extreme level of conservatism that 
typically results from deterministic worst-case threat 
model impact analysis.  This level of conservatism is so 
great that it is hard to imagine that the actual user 
integrity risk is somehow worse than what is modeled in 
this manner.  However, “hard to imagine” does not equate 
to “is guaranteed not to happen.”  The goal of worst-case 
analysis is to eliminate uncertainty (by assuming the 
worst possible outcome of the uncertain variables) and 
thus “prove” that a given probabilistic integrity risk 
requirement is met.  However, the limited knowledge 
upon which threat models are based means that such 
“proof” is illusory at best and dangerously misleading at 
worst.  Meanwhile, a great deal of performance (in terms 
of user availability and continuity) is sacrificed.  As 
shown by the limited example of Figure 6, probabilistic 
analysis makes it possible to trade off risk reduction and 
performance benefit in a coordinated manner.  The 
illusion of guaranteed bounds on risk is abandoned, but as 
the financial crisis illustrates, it is just that – an illusion.   
 
6.0 SUMMARY 
 
This paper provides an overview of the events leading up 
to the financial crisis of 2008 – 2009 and examines the 
failures of risk modeling in quantitative finance that led 
directly to the debt-market collapse that precipitated the 
crisis.  The Efficient Market Hypothesis (EMH) that lies 
at the core of quantitative finance was known to be funda-
mentally flawed, but its elegance and convenience blinded 
most researchers and practitioners from the growing 
evidence of its weaknesses.  Worse, the near-complete 
acceptance of the EMH motivated researchers to build 
models that dramatically accentuated its flaws and led to 
absurd (but eagerly accepted) conclusions, such as the 
copula model for loan default risk.  These models proved 
dramatically vulnerable to changes in the housing market 
in 2007 – 2008 and led directly to the ensuing crash. 
 
Fortunately, the gross inattention to potential anomalies 
and violations of “nominal” behavior that characterize 
quantitative finance do not apply to satellite navigation 
integrity assurance.  Similar techniques and probability 
distributions are used, but the understanding of what can 
go wrong leads to detailed emphasis on modeling and 
mitigating rare events.  Where significant uncertainty 
exists, conservative assumptions are made in an attempt 
to be robust to it.  As a result, the certification of SBAS 
and GBAS likely demonstrates that these systems meet 
their integrity risk requirements with substantial margin. 
 
Despite this, the predominant use of deterministic models 
for risk assessment is potentially dangerous because it 
purports to provide “guaranteed” bounds on uncertainty 
that do not apply in practice.  The conservative nature of 
satellite navigation risk assessment greatly reduces the 
underlying integrity risk but cannot eliminate it, while it 

leads to performance losses that potentially have 
unmeasured safety impacts.  Given the degree of 
uncertainty that is present, probabilistic models are much 
better suited to providing “illusion-free” risk assessments 
that enable realistic system level design trade-offs.  
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